- Alanís, J.A., Soto, A.E. (2012). La Integral de funciones de una variable: Enseñanza Actual. El Cálculo y su Enseñanza, 3(1), 1-6. Recuperado de: https://mattec.matedu.cinvestav.mx/el_calculo/data/docs/Alanis-Soto-9-14.pdf
- Baron, E.M. (1969). The origins of the infinitesimal calculus. Dover Publications: New York.
- Bayma, J. (1889). Elements of the Infinitesimal Calculus. A. Waldteufel: San Francisco, CA. Recuperado de: https://archive.org/details/elementsinfinit00baymgoog
- Bell, J.L. (2006). The continuous and the infinitesimal in mathematics and philosophy. Milán, Italia: Polimetrica, International Scientific Publisher.
- Bell, J.L. (2012). Continuity and Infinitesimals. The Stanford Encyclopedia of Philosophy (Winter 2012 Ed.) Edward N. Zalta (ed.) Recuperado de: https://plato.stanford.edu/entries/continuity/
- Britton, Kreigh y Rutland (1965). Matemáticas Universitarias. México, DF: Compañía Editorial Continental, S.A.
- Caramalho, D. (2008). Lacroix and the Calculus. Birkhäuser Verlag AG: Berlin.
- Child, J.M. (1920). The Early Manuscripts of Leibniz. Dover Publications: Mineola, NY. Recuperado de: https://archive.org/details/earlymathematic01gerhgoog
- Dickson, L.E. (1902). College Algebra. John Wiley & Sons: New York. Recuperado de: https://archive.org/details/collegealgebra00dickrich
- Godino, J.D., Batanero, C., y Font, V. (2007). The onto-semiotic approach to research in Mathematics Education. ZDM. The International Journal on Mathematics Education, 39(1-2), 127-135.
- Freudenthal, H. (1972). Mathematics as an educational task. D. Reidel Publishing Company/Dordercht Holland: Países Bajos.
- Groat, B.F. (1902). An Introduction to the Summation of Differences of a Function. H.W. Wilson, Publisher: Minneapolis. Recuperado de: https://archive.org/details/introductiontosu00groa
- Guenon, R. (2001). The Metaphysical Principles of the Infinitesimal Calculus. Sophia Perennis: Hillsdale, NY.
- Hairer, E. y Wanner, G. (2008). Analysis by its history. Springer: San Francisco, CA.
- Keisler, H.J. (2005). Elementary Calculus. An infinitesimal Approach. (2nd. Ed.) https://www.math.wisc.edu/~keisler/calc.html
- Keisler, H.J. (2011). Foundation of Infinitesimal Calculus. University of Wisconsin. https://www.math.wisc.edu/~keisler/foundations.html
- Keisler, I. (2001).
History of the Infinitely Small and the Infinitely Large in Calculus. Educational Studies in Mathematics, 48(2–3). pp. 137–174. - Leib, D. (1915) Problems in the Calculus Ginn & Co.: USA.
- Lodge, A. (1913). Differential Calculus for Beginners. London: G. Bell and Sons, LTD.
- Lozano, R.Y.A. (2011). Desarrollo del concepto de la Derivada sin la noción de límite. (Tesis de licenciatura, Bogotá, Universidad Nacional de Colombia.) Recuperado de: http://www.konradlorenz.edu.co/images/stories/articulos/DESARROLLO_DE_LA_DERIVADA_SIN_LA%20NOCION_DEL_LIMTE.pdf
- Osborne, G.A. (1906). Differential and Integral Calculus with examples and applications. Boston, USA: D.C. Heath & Co. Publishers. Recuperado de: https://archive.org/details/cu31924015990108/page/n4
- Phillips, H.B. (1916). Differential Calculus. New York: John Wiley & Sons. Recuperado de: https://archive.org/details/differentialcalc00philuoft
- Quintero, Z.R. (1999). Una relectura del Introductio in analysin infinitorum de Euler. Miscelánea Matemática, 26, pp. 59–57.
- Soto, A.E. (2014). Significados institucionales y personales del concepto de Integral Definida de funciones de una variable en una institución educativa. (Disertación Doctoral). Instituto Tecnológico y de Estudios Superiores de Monterrey. Monterrey, N.L., Mexico. Recuperado de: http://enfoqueontosemiotico.ugr.es/documentos/Tesis_doctoral_Efra%C3%ADn_Soto_Apolinar.pdf
- Soto, A.E., y Alanís, J.A.R. (2014). Antecedentes y surgimiento de la Integral acorde a Leibniz. Eureka, 31(4), 7-23. Recuperado de: https://www.uaq.mx/ingenieria/publicaciones/eure-uaq/ (Núm 31. Abril (2014).)
- Strang, G. (1991). Calculus. Wellesley-Cambridge Press. Recuperado de: https://ocw.mit.edu/ans7870/resources/Strang/Edited/Calculus/Calculus.pdf
- Swokowski, E.W. (1979). Calculus with analytic geometry. 2nd Ed. Boston, MA: Prindle, Weber & Schmidt.
- Townsend, E.J., Goodenough, G.A. (1910). Essentials of Calculus. Henry Holt & Company: New York. Recuperado de: https://archive.org/details/cu31924003256132/page/n4
- Todorov, T. (2001). Back to Classics: Teaching Limits Through Infinitesimals. International Journal of Mathematical Education in Science and Technology, 32 (1), pp. 1–20. Recuperado de: https://arxiv.org/abs/1108.4657.
- Encyclopedia of Mathematics. Differential. Recuperado de: https://www.encyclopediaofmath.org/index.php/Differential
- Encyclopedia of Mathematics. Infinitesimal calculus. Recuperado de: https://www.encyclopediaofmath.org/index.php/Infinitesimal_calculus
- Yavorsky, B.M., Detlaf, A.A. (1982). A modern handbook of Physics. Moscow: MIR Publishers.
Add a note